Borates in glazes and enamels

In glazes, boric oxide reduces melting temperature and improves glaze/body fit. It enhances glaze appearance and can improve chemical and mechanical durability. Sodium borate is used to produce low viscosity frits for enamelling of metals, principally steel, cast iron and aluminium.

Ceramic glazes can be divided into three categories, depending on the substrate to which they are applied:
- Tiles - wall, floor and sometimes clay roof tiles
- Tableware – porcelain, china, stoneware and earthenware
- Sanitaryware - vitreous china and porcelain

Glazes for sanitaryware do not contain borates. Many tableware glazes do contain borates, but by far the largest consumers of boric oxide (B$_2$O$_3$) in ceramics are glazes for wall and floor tiles. Most tile glazes contain B$_2$O$_3$. The raw materials that supply this oxide are soluble in water and so cannot be used directly in glazes. They must first be rendered insoluble by incorporating them in so-called ceramic frits. This is the primary function of frits.

Frits are materials of a glassy nature, composed mainly of SiO$_2$, which are obtained by fusing different crystalline materials at high temperatures (around 1500ºC). The second function of ceramic frits is to “pre-melt” the ceramic glaze before the glaze firing process itself, and this helps to obtain a high glaze gloss even when using very short firing cycles.

The boric oxide content of frits depends on the type of glaze for which the frits are intended. In general:
- For glazes used in ceramic tile manufacturing process, the higher the firing temperature the lower the B$_2$O$_3$ content of the frit
- A high temperature and/or long firing cycle means a high heat work, and this reduces the amount of B$_2$O$_3$ allowable in the glaze
- With excessive B$_2$O$_3$ content, pinhole defects can result

<table>
<thead>
<tr>
<th>Process</th>
<th>B$_2$O$_3$ content in the frits (% by weight)</th>
<th>Firing conditions (Temperature/time)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wall tiles - traditional double firing</td>
<td>8 - 20</td>
<td>(980-1000)ºC / (360-720) min.</td>
</tr>
<tr>
<td>Wall tiles - fast double firing</td>
<td>4 - 10</td>
<td>(1060-1080)ºC / (30-55) min.</td>
</tr>
<tr>
<td>Wall tiles - fast single firing</td>
<td>3 - 6</td>
<td>(1100-1120)ºC / (35-55) min.</td>
</tr>
<tr>
<td>Stoneware floor tiles - fast single firing</td>
<td>0 - 3</td>
<td>(1140-1180)ºC / (35-55) min.</td>
</tr>
</tbody>
</table>

The table above lists the different tile manufacturing processes together with the B$_2$O$_3$ content of the frits used and the standard firing cycles.
Traditional double firing has virtually disappeared from all regions of the world due to higher energy and labour costs, and has been replaced by single firing. The type of frit and borate suitable for double and single firing varies, as well as the average B_2O_3 content of the frits:

- In double firing, sodium oxide (Na_2O) brings benefits and the most appropriate borate for producing these frits is a sodium borate.
- In single firing (especially for wall tiles) Na_2O is often not desirable, and frits for use in this type of glaze are normally formulated with a non-sodium borate.

Benefits of B_2O_3 in glazes
Boric oxide can form a glass on its own, but its dual use is as a flux and network former. The value of boron as a flux has been recognised for many years – it has become exceptional for boron not to appear in recipes for low temperature (i.e. $<1100^\circ C$) glazes. Borate has an important place in glaze technology and is the second most important network-former after silicon. The benefits of boric oxide in glazes are as follows:

It is a flux, but does not increase thermal expansion coefficient.
This is the main reason for using B_2O_3 in tile glazes, and is true for B_2O_3 contents below 12%. It enables the production of glazes that behave appropriately at the temperatures used in current manufacturing processes, and yields lead-free ceramic tiles. There are many other fluxing oxides (e.g. alkalis, alkaline earths) but all increase thermal expansion coefficient since they are network modifiers rather than formers. The one exception is lead oxide, which can be a former or modifier. However, owing to its toxic character, the use of PbO was suppressed some time ago. In ceramic tiles, the use of lead has disappeared from all frits except a few that are used for low temperature (third firing) decoration.

It improves glaze appearance
B_2O_3 reduces surface tension, does not crystallise from melts, and tends to hinder the crystallisation process of other phases. These effects are useful in the production of glazes with high gloss, since low surface tension gives a flat glaze surface and most crystalline phases present in a glaze reduce the surface flatness and the gloss. Boric oxide increases the gloss or brilliance of a melt but does not increase the refractive index. Borate also has a strong solvent action on colouring oxides, and boron glazes are good bases for glazes coloured by dissolved transition metal oxides.

It can improve chemical and mechanical durability
Correctly used, B_2O_3 can greatly improve chemical durability. In general at appropriate levels ($<12\%$ in lead-free glazes) the effect is beneficial, but at excessive levels it is negative. Mechanical strength and scratch resistance are improved after increasing the level of borates in a glaze. There are many types of glaze which would be impossible to produce without B_2O_3 – for example, glazes formulated for single and double-fire wall tile manufacture. In this case, removing B_2O_3 from the frits would make it impossible to fabricate certain types of ceramic tiles, using present production cycles.
Frits for the enamelling of steel

Enamel frits are different from ceramic frits since the properties of the substrate are quite different. Ceramic bodies are typically fired at temperatures above 1100°C and have a low thermal expansion coefficient. Enamelled steel on the other hand is fired at around 800°C and has a thermal expansion coefficient twice that of ceramic bodies. This means that enamel frits are much softer (less viscous) than ceramic frits, and have a much higher thermal expansion. This is achieved by using more B$_2$O$_3$ and much more Na$_2$O in enamels than in ceramics. This is summarised in the table below.

Product information

Optibor® TG boric acid is commonly used as the primary B$_2$O$_3$ source for production of frits for single fired wall tiles, and other frits which are lead-free. It is a granular free-flowing product with excellent bulk handling properties, and has a high and consistent level of B$_2$O$_3$.

Neobor® borax pentahydrate is the most commonly used source of B2O3 for frits for double firing, and some floor tile frits where sodium is a benefit. It has a high and consistent level of B$_2$O$_3$ (~49%) and very low and consistent impurity levels. It also contains 21% Na$_2$O which is a powerful flux in frits. Neobor is a free flowing granular product; it is chemically stable and has excellent bulk handling characteristics.

Dehybor® anhydrous borax is the third option for frits. It is most attractive for enamel frits where the B$_2$O$_3$ content of the raw material batch is very high. Using Dehybor in place of Neobor significantly reduces the loss on ignition of the batch, which reduces furnace emissions and energy consumption, and increases furnace productivity. Dehybor is a granular free-flowing product with excellent bulk handling properties and a very high B$_2$O$_3$ content (69%), the remainder of the composition being Na$_2$O.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Ceramic</th>
<th>Enamel (steel or cast iron)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typical B$_2$O$_3$ content</td>
<td>5% (SFF*)</td>
<td>14%</td>
</tr>
<tr>
<td>Typical Na$_2$O content</td>
<td>0.5%</td>
<td>14%</td>
</tr>
<tr>
<td>Preferred borate</td>
<td>Non-sodium</td>
<td>Sodium</td>
</tr>
<tr>
<td>Predominant furnace type</td>
<td>Continuous</td>
<td>Batch</td>
</tr>
<tr>
<td>Fusion temperature</td>
<td>1500°C</td>
<td>1250°C</td>
</tr>
<tr>
<td>Firing temperature</td>
<td>>1100°C (SFF*)</td>
<td>~ 800°C</td>
</tr>
<tr>
<td>Quenching method</td>
<td>Water</td>
<td>Chilled rolls</td>
</tr>
</tbody>
</table>

Copper and aluminium can also be enamelled using borate-based frits, but the main use of enamel frits is on steel and cast iron. *SFF = single fast firing
About U.S. Borax

U.S. Borax, part of Rio Tinto, is a global leader in the supply and science of borates—naturally-occurring minerals containing boron and other elements. We are 1,000 people serving 500 customers with more than 1,700 delivery locations globally. We supply 30% of the world’s need for refined borates from our world-class mine in Boron, California, about 100 miles east of Los Angeles. We pioneer the elements of modern living, including:

- **Minerals that make a difference**: Consistent product quality secured by ISO 9000:2001 registration of its integrated quality management systems
- **People who make a difference**: Experts in borate chemistry, technical support, and customer service
- **Solutions that make a difference**: Strategic inventory placement and long-term contracts with shippers to ensure supply reliability

About 20 Mule Team® products

20 Mule Team borates are produced from naturally occurring minerals and have an excellent reputation for safety when used as directed. Borates are essential nutrients for plants and key ingredients in fiberglass, glass, ceramics, detergents, fertilizers, wood preservatives, flame retardants, and personal care products.

20 Mule Team Borax products in glazes and enamels:

- Neobor® Borax Pentahydrate
- Optibor® Boric Acids
- Dehybor® Anhydrous Borax
- Borax Decahydrate
- Enhanced Borates